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CERTAIN PROBLEMS OF MOTION OF INCOMPRESSIBLE VISCO-FRIABLE MATERIALS* 

L. P. GORBACHEV, V. G. GRIGOR'EV, and E. E. LOVETSKII 

The steady motion of an incompressible visco-friable medium is considered.Equations 
of motion in the boundary layer are obtained and the flow over a flat plate is in- 
vestigated. The flow in a plane diffuser and between rotating cylinders is analyzed. 

Models of visco-friable continuous medium were proposedin anumber of publications /l-33/. 
A visco-friable material is essentially viscoplastic but with its yield stress dependent on 
pressure, i.e. the deviator of the stress tensor is defined by the expression /3/ 

(1) 

where li is the coefficient of internal pressure, n is the viscosity coefficient, p is the 

pressure which is assumed positive to make it possible to consider the visco-friable medium 
as a continuous one. 

The presence in visco-friable media of limit shear stress results in the formation of 
zones where such medium moves like a solid body. The position and shape of boundaries that 
separate viscous flow zones from those of quasisolid flow have to be determined in the process 
of solving the problem. Conditions at the solid zone boundary were determined for the conven- 
tional viscoplastic material in integral form in /4/ and in final form in /5/. 

Below, we present examples of steady motion of incompressible visco-friable materials for 
which Eq. (1) is valid, and whose viscosity coefficient n is assumed constant. 

Let us consider the equations of a steady plane boundary layer in the absence of mass 
forces of a visco-friable medium defined by the equations of motion of a continuous medium in 
terms of stresses and by Eq.(l). 

We introduce the dimensionless quantities 

where Re is the Reynolds number, Bi is a dimensionless parameter that defines the ratio of 
plastic and viscous energy dissipation, I and y are the longitudinal and transverse coordinat- 

es, pa is the characteristic pressure, and E is a small, so far undefined, quantity dependent 
on Re and Bi. 

Let us assume that the quantity av,l ay is positive throughout the boundary layer, and 
disregard terms of higher order with respect to E. Then from the equations of motion we 
obtain the following equations: 

P,L w a% w =_-a’--A>+$-Bi--_. 
3p.l ax ay* OY 

Let kp, >spC'" . We then have the plastic boundary layer (E= PIi"') whose equation is 

In this case the boundary layer thickness 6 grows with increasing 
I3 - I, InU/(kp&l' :. 

flow velocity 
Note that for a viscoplastic medium (78 = con&) d - L ItjUI(r,L)I'~. 

Let us apply Eq. (2) in the problem of flow over a semi-infinite plane plate of a plane 
parallel stream of visco-friable medium. Let the plane of the plate coincide with the half- 
plane =,I~ which corresponds to positive =I and the line Z, = 0 represents the plate leading 
edge. Reverting in Eqs.(Z) to dimensional quantities, we obtain 

__ -. -~ 
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with boundary conditions 
U1 = 1‘; = 0, 

We seek a solution of the form 

v,-uj(f), c,==u v- 
where f and fi are some dimensionless functions. Solving Eqs.(3) 
can obtain f= -kP+F%lE.[Eff1/%. The friction force acting on a 
surface is 

14) 

with allowance for (4) we 
unit area of the plate 

For a plate of Length 1 (along the +,-axis) the total friction force acting on per unit 
of plate width (in the dtrection of axis 2d is 

where frictiononthe two sides of the plate is taken into account by the factor 2. 
Let us consider the steady motion of a visco-friable medium between two plane rough walls 

at an angle of Oa to each ather, with the outflow taking place aLong the intersection line 
of the two planes. 

We select cylindrical coordinates r,p.r with the :-axis on the intersection line of the 
planes and angle cp measured from the bisectrix of the angle 2a. The motion is uniformalong 
the z-axis, and it is reasonable to assume it to be purely radial, i.e. Q = vz =O,Y,= u@,(P). 
The equations of motion form the system 

(61 

where the last equation shows that w is a function of only o. Hence we seek a solution of 
the form 

Y=+(e), rt=+W{'F) (7) 

Substituting (7) into (61, we obtain for functions u and w the system of equations 

(8) 

The problem has been, thus, reduced to the integration of ordinary differential equations. 
The condLtion of velocity vanishing at the walls and the stipulation that the same quantity 
Q>O of friable medium 

u(&a)=O, Q=T j rv drp I ?V udp 
--a -cc 

passes through any cross section r= con3 constitute the boundary conditions. 
For the motion considered here the ratio R = Qj(pv) represents the Reynolds number. 
Let us assume that the motion is symmetric about the plane e-0 and that u(e) changes 

monotonically from zero at cp==*ta to U= u,>O at 1p=~ 0. 
A symmetrically divergent flow of a viscous fluid in a diffuser is possible for a given 

angle of divergence only at Reynolds numbers not exceeding a certain limit. For a visco-fri- 

able medium the more stringent condition is that of positive pressure (~>a). 
Regions of existence of visco-friable medium symmetric flows are shown in Fig.1 in the 

r*,R plane for various values of the dry friction coefficient, i.e. of flows of which the 
condition w >O is satisfied. For a given a there exists an R,, such that when R> R, the 
flow of a visco-friable medium is impossible without continuity breakdown. The dash line in 
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Fig.2 

Fig.1 

Fig.1 corresponds to k= #.3# the dash-dot line to k =O, and the solid line represents the 
i3oundary of the region of symmetric flow existence fox a viscous fluid. The results of num- 
erical integration of system (81 for R =0.38,~=0+67 are also plotted in Fig.1, where the 
solid lines correspond to k= 0 and the dash lines to k= 0.3. 

Let us consider the motion of a v&co-friable material contained between two infinite 
coaxial cylinders rotating about their axis at angular velocities Q1 and Q, . The cylinder 
radii are R, and R, with RL<R1. A similar problem (d,= 0) was considered in /6/ without 
taking into account viscosity. 

We select the cylindrical coordinates r,q,r with the z-axis on the cylinder axis.trwing 
to symmetry we have v,=v,=O,v~lufr},pspM. 

The equations of motion in cylindrical coordinates reduce in this case to two equations 

(9) 

whose soluticn is sought in the form 

The general solution of system (9) depends on three arbitrary constants for whose deter- 
mination it is necessary to know in addition to the cylinder rotation velocities, one more 
parameter, fox instance, the pressure on one of the cylinders. Thus the boundary conditions 
for system (91 can be specified in the fom 

When a1 = P, = Q the medium and the cylinders rotate asa single whole v= RF. Let us 
consider the case when only the external cylinder rotates: S&=0,9,=6& The results af num- 
erical integration of system (91 in the Case of RS / Rx = 1.5, QR,* / vg = 1.0 are shown in Fig.2, 
where the dimensionless radii t=riA, are plotted on the axis of abscissas, and the dimen- 
sionless angular frequency h=fiz appears on tie axis of ordinates. Curves I, 2, and 8 
correspond to the following values cf the dimensionless pressure &? W : 0.5, 5.0, and 15.0, 
respectively, on the inner cylinder. 

It will be seen that as the pressure is increased I regions of the visco-friable medium 
rigidity may appear in it. The expression for the moment of friction forces acting on the 
cylinders can be obtained only in the case of a norrOw gap between the cylinders, when there 
are no rigidity regions. The moment of friction forces (per unit of cylinder length) in that 
approximation is 

where P is the pressure in the medium which in the considered here approximation may be assum- 
ed constant. When k=O formula (10) reduces to the known formula fox a viscous fluid. 
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